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SUMMARY

A simplified ar@ysis is made of mass transfer cooling - that is,
injection of a foreign gas - near the stagnation point for two-dhens ional
and axisymmetric Iml.ies. The reduction in heat transfer is given in
terms of the properties of the coolant gas smd it is shown that the heat
transfer may be reduced considerably by the introduction of a gas having
appropriate thermal and diffusive properties. The mechanism by which
heat transfer is reduced is discussed.

-ODUCTION

The reduction of heat transfer near the stagnation point of a blunt
* body (two-dimensional or axisymmetric) is of primary importance when the

body attains high velocity. One method of cooling is to introduce gas
of high specific heat into the lsminar boundary layer near the stagna-

. tion point and to allow this gas to flow over the nose of the body so
that lsrge amounts of heat are convected away from the nose.

A number of exact solutions based on various assumptions of fluid
properties are available for stagnation-point heat transfer with no
injection. (A comprehensive list of these references may be found in
refs. 1, 2, and 3.) It has also been shown that the variation of the
product of density and coefficient of viscosity across the boundary
layer has an important effect on the heat transfer (ref. it).

The boundary-layer eqmtions for a binary mixture are well estab-
lished (ref. 5) and several methods are available for the evaluation of
the thermal and diffusive properties of a binsrymixkre (ref. 6).

Exact solutions (refs. 1 and 3) have recently been obtained for
air-to-air injection nesr the stagnation point; these solutions have
required lengthy numerical integration techniques and are necessarily
limited to discrete values of the parameters involved (for example, the
rate of injection of mass and the viscosity-law assumption).
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The purpose of this paper is to present a simplified analysis by
.

which the effect on the heat transfer of injection of air, or a foreign
gas, may be found and, also, to show more clearly the important thermal *
and diffusive properties of the foreign gas if it is to be effective as
a coolant. Application of the present method to ablation cooling is
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made in reference 7.

SYMBOLS

coordinate along wall

coordinate normal to wall

transformed y-coordinate

arbitrary value of y outside boundary

arbitrary value of z outside boundary

component of velocity in x-direction

component of velocity in y-direction

modified velocity component, ~
%

free-stresm velocity in x-direction

constant in velocity distribution

temperature

mean temperature (eq. (43))

concentration of foreign gas

mean concentration (eq. (42))

density of mixture

coefficient of viscosity

thermal conductivity of mixture

coefficient of binary diffusivity

.

layer

layer

.

.
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.
G rate of mass injection per unit area

● %
specific heat at constant pressure

% mean specific heat (eq.,(17))

‘Nu Nusselt nuniber

R Reynolds nurriber

N- Prandtl nuniber

%c Schmidt number

q heat-transfer rate per unit area

% velocity-boundsry-l&yer thickness

3

of wall

5T thermal-boundary-layer thickness

% concentration-boundary-layerthickness

.
K function of Prandtl number and Schmidt nuniber(definedby

eqo (40))
.

‘eff effective heat

Subscripts:

e external flow,

w wall

capacity of foreign gas

near stagnation point

c coolant, far inside wall

o no injection

1 foreign gas

2 air

b body
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DESCRIPTION OF THE BOUNDARY IAYER
.

*

The flow considered is that shown in figure 1. In the steady state
the laminar boundary layer near the stagnation point is a thin layer of
fluid in which the velocity, temperature, and concentration of the
foreign gas”vary rapidly from the external stream values to the wall
values. In the neighborhood of the stagnation point the three super-
imposed boundary layers (that is, the velocity, temperature, and con-
centration boundsry layers) have constant, although different,
thicknesses.

It is assumed that the component of velocity parallel to the wall
is linesr in x and that the normal component of velocity, the tempera-
ture, the concentration of the foreign gas, and the properties of the
mixture are all functions only of y, the distance normal to the wall.
(This assumption results directly from the “similarity” nature of the
flow and the absence of thermal and concentration gradients along the
wall.) It is also assumed, consistent with the foregoing variation of
velocity components, that the coolant gas is injected normally at the
wall with a velocity independent of x.

When a given amount of coolant gas is inJected, it diffuses through
the boundary layer and is convected with the air, as a mixture, under
the action of the pressure gradient imposed by the external flow and ●

the shearing stress due to the presence of the wall. The concentration
—

of foreign gas at the wall is uniquely determined by the rate of injec-
—

tion. The extent of the boundary-layer shielding depends upon the spe- ““ ‘“-
cific heat of the foreign gas and upon the wall temperature as well as
the coolant and stagnation temperatures. ~ shielding also depends
upon the manner in which the coolant gas diffuses through the bound~

.+

layer. The analysis shows the relative importance of these quantities.

ANALYSIS

The method to be used is as follows: the wall conditions for
coolant injection are formulated in a simple manner (and the results
are justified by a more detailed consideration of the flow within the
porous wall presented in the appendix); use is then made of previous
“exact” results for stagnation-point heat _*ransferwith no injection in

—.

order to determine the gross chsracteristi.csof the thermal and viscous
boundary layers near the stagnation point. These results are then m“ed
in a simple approximate integral method to determine the effect of injec-
tion on the heat transfer to the wall. *—

.
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The Coolant Flow

The boundary conditions at a porous wall through which a coolant
is injected may be obtained very simply by ignoring the presence of the
solid pert of the wall; the justification for this is given in the
appendti where more detailed considerations are made.

When the steady flow of coolant toward the surface of the wall is
considered, the volume taken up by the solid wall being neglected, it
is seen that there is a balance of diffusion and convection which
governs the flow of mass and

The transfer of mass is

heat within the wall.

given simply by

Pv= ~vw =a (1)

where & is constant.

The diffusion of air inward from the surface is balanced by the
convection towsrd the surface:

(1 - W)fi (2)

Diffusion of air Convection of air
from surface towsrd surface

since W is the concentration of the foreign gas and (1 - W) is that
of air.

Similarly, the transfer of heat is given by

~ dT = CP,l(T - Tc)fi
G

Diffusion of Convection of heat
heat from toward surface
surface

It is important to note here that, even though the specific heat of the
mixture % is given by

(3)

(with cp,l ad %,2

is Cp,l; in unit time

CP = Cp,lw+ CP,2(1 -w) (4)

constant), the value used correctly in equation (3)
the heat transferred at any point y in a



6 NACA TN 4391

direction away from the surface is sufficient to raise an amount of
.

foreign gas of specific heat Cp,l through _thetemperature range T - T=.
9-

devaluatingequations (2) and (3) at the wall surface gives the fol-
lowing boundary conditions which are required for the solution of the
boundary-layer eqwtions:

[1-@)12 ~ = (1 - Ww)li
dy w

[1kg SC -Tc)il
Ww p;@w

(5)

(6)

Detailed study of the flow within the porous wall yields the smne bound-
ary conditions. (See appendix.)

The Boundsry-Layer Integral Equations

The integral equations which describe the trmsfer of mass and heat
in the boundsry layer are derived in a simple way without reference to
the general differential equations.

.-

Consider a small rectangle of height Y (Y greater than any
boundary-layer thickness) and length Ax, in which p, W, and T are
independent of x, near the stagnation point of a two-dimensionalbody.
(See fig. 2.) The continuity of mass maybe expressed as follows:

r..]Y

-[J]

Y
+3(Y)V(Y) Ax + Ii& = pu dy W*

o X+AX o x

Flow in..from Injection Flow out
external strean-” X+AX

This equation, in the limit as & + O, becomes

nY
-P(Y)V(Y) + Ii =~ Jdxow

When the form U = Cx of the external velocity
that

at Flow in
at x

W (7)

is used and it is noted

.

.

. .
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.

.

d

J

Y

J

Y
pudy= ~ du

ZO #Y
o

and

u= C;x

where

Since
it is

~ is independent of x, then equation (7) reduces to

J
Y

-P(Y)V(Y) + Ii = c
o

P&9 (8)

the density p is a function of concentration and temperature,
convenient to introduce the quantities

“z
dz = :W

/

so that equation (8) beccmes finally

J
z

-P.J(z) + i = Cpw Qdz
Ou

Similarly, the equation for the transfer of foreign gas becomes

i =

Gas injected

The equation of heat transfer.

Gas convected

is written

7

(9)

(lo)

(11)
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() J“p,2(Tf=-Tw~%v(z) - ‘f = ‘% ~zcP(T-TW)~dz
w

(12)
Convection of heat Transfer of Convection of heat
from external stream heat to wall in boundary layer

The quantity V(Z) may be eliminated
equations (4), (10), and (11); thus,

from equation (12) by use of

I
z

cPw cp(Te - T)

()

;dz= k~
*W

+ ~p,l(Te - TW)~
o

(13)

Alternatively, by use of the boundary condition givenby equation (6),
equation (13) has the form

I
z

C(+ cp(Te - T) ~dz = cp,l(Te - Tc)h (14)
o

.

The equations for transfer of heat and mass near the axisymmetric
stagnation point can be derived in a similar manner and are identical
with equations (10) to (11) where x is again the distance from the .

J’
Yp

stagnation point along the surface but z = 2 — dy.
()%

Heat-Transfer Relations for No Injection

The rate of heat transfer is first given in terms of Nusselt num-
ber NNU,W, Reynolds number ~, and Prandtl number Npr,w for which-

the usual definitions near the stagnation point are used:
-

()%U,w=Te:q~w

“
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and

Npr,w = * cp,2

The rate of heat transfer to the wall with no injection ~ is now

()=kg

<)

1/2 1 Nu,w
% @w=%2@e-T” Mp*9 —‘Pr,w 1/2

o

Exact evaluation of the dimensionless ()‘Nu,wparameter — has been
1/2

%0

made by many investigators (for exsmple, refs.”1> 2, and 4). The
following formulas were found to be in good agreement with previous
exact results (ref. 1) under the assumption of constant W:

For the axisymmetric body,

()[‘Nu,w

(]

%
= 0.765 - 0.065 1 -r ~n,w0”4

%1’2 ()
e

and for the two-dimensional body,

(15)

(16)

(17)

Alternative expressions, based on the solutions presented in refer-
ence h in which PU is not constant, are as follows:

For the axisymnetric body,

(18)

——
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and for the two-dimensional body,

&z)o=”’’o(Rr”’Nprw

NACA TN 4391

.

.

(19)

Boundary-Layer Thickness Without Injection

Use is now made of these results (eqs. (16) to (19)) to determine
the thickness 5U,0 of the velocity boundary layer without injection.

Eq~tion (13) with & = O is written in the form

I
z~e-T

- -,&=& (&)’’2*&)o (20,
1

%, o 0 ‘e

and linear profiles are assumed for velocity and temperature in order to
evaluate the integral in equation (20); that is,

u z.=—
u %, o

1

Te-T
=1-—

Te - Tw %’,0
I

.

(’l)

where ~,0 is the thickness

hand side of equation (20) is

tion (20) reduces to

of the thermal boundary layer. The left-

()
2

1 5T,0then approximately -—
6 5U,0

and equa-

(22)

.

.
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.

. ()‘Nu,wIf the value of when Nfi,w = 1 is signified by the super-
1/2

%?~

script (1), then equations (16) to (19) show that

This eqwtion
coefficient.

u1/2
%~

shows the effect
When” Nw,w = 1,

are similar so that
%;0 = ~;
%, o

(23)

\%’”Jo

of the Prandt1 number oh the heat-transfer
the thermal and viscous diffusive effects

thus, from equation (22)

%,o(-y’2=6&~) (24)

()
pwc @

The nondimensional thicmess ~,. — is now assumed to be inde-
+

pendent of the Prandtl number (since the momentum equation is only
weakly dependent on the Prandtl nunher); thus, when equations (23) and
(24) are inserted into eqyation (22), the following simple result is
obtained:

%C,o= Nm,w -0.3
%, o

This result is analogous to that for a flat plate (ref. 8):

(25)

5T— = NR,W -1/3
au

.
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Injection of Air
.

Consider now the effect of injection of air into the boundary layer. .
The boundary layer becomes thicker because of the increase in mass flow
which results in reduced gradients in the boundary layer. In particular,
the heat transfer to the wall is reduced since the heat convected par.
allel to the wall in the boundary layer is increased.

The effect of air injection on the boundary-layer thickness is
given by considering the mass flow in unit time per unit srea, as
follows:

Mass flow
injection

which gives

with ~SS flow with Mass
no in~ec_t_ion injected

(26) .

when linear profiles are assumed for u
(

.

that is, (no injec-.
n ;=&

\
tion) and ~ =~

U% )(injection) .

It is assumed
since the ratio of
layer thickness depends on diffusive processes, that is, on the Prandtl-
number.

that the relation given by equation (25) is stiI1.true
thermal-boundary-layer-thicknessto velocity-boundary-

With %,1 = %,2 equation (13) maybe written by use of

equation (15) in the form

J‘Te-T~ , VW ‘f2 , NNU,W+ ;
L3u ()[~dz=— — ——

0 ‘e -TWU au WC Npr,w?@
1(~~c) 1/2



mcA TN 4391

Linear profiles for
siorisfor 5U (eq.

this equation, with

%.

13

temperature and velocity (eqs. (21)) and the e~res-
(26] ) and 5U,0 (eq. (24))are used to simplify

the following result:

1 “Nu,w 1

L)(

Nu,w - ~-&N

)

-0.6—— =— —
‘Pr,w

%
@ ~,w 1/2 3 Pr,w * ’27)

o

In terms of the rate of heat transfer q, equation (27) has the
form

=
%-

Heat transfer
for no
injection

(1 lN )-0.6
- ~ Pr,w ~,2(Te - Tw)fi

(28)
Boundsry-layer shielding
by convection

( INThe quantity 1 - –3 Pr,w
)

‘0”6 (Te - Tw) may be interpreted as the

average temperature rise in the boundsry layer of the mass introduced
at the wall surface. An alternative expression of this heat balance,
obtained by using the boundary condition given by equation (6), is

When ~ is expressed

of equations (15) and (23),

Te - Tw

Te-Tc=

in terms of dimensionless quantities by use

equation (29) becomes

%r,w
0.6 A

(~~c) 1’2

~Nu,w ‘1) + ~ fi

()
p 33

0

(30)
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Eqyation (30) may be used to determine the rate of injection
required to maintain the wall temperature Tw at a given desired value

when Te and Tc exe specified.

Before proceeding to considerations of injection of foreign gas,
the results given by eqution (27) are compared with available exact
solutions as a check on the validity of the several simplifying assump-
tions that have been made.

Firstly, under the assumption of constant PIL,equations (I-6)
(eq. (17) for the two-dimensional flow) and (27) are used to give

N’NU,w

p
as a fumction of t-hedimensionless ra~e”of inass,inJection

lil . A comparison of these results with the results of refer-

(p##) 1/2

ences 1 and 3 shows very good agreement except for the extreme rates
of injection with Prandtl number equal to unity. (See figs. 3, 4,
and 5.)

Secondly, for variable ~, equations (18)(or eq. (19)) and (27)
are used and the results are compared with those of references 3 and 4.
For a Prandtl number of 0.71 and no inJection reference h gives, for

“

the axisymmetric case,

and the present report

.

gives (fromeq. (18))

‘Nu)w PeVe 0-4

()

= 0.667 —

%
1/2 P*

A comparison of the results obtainedby use of equation (18) with the
results of reference 3 in which the Sutherland viscosity law was used
is presented in figure 6.

.

The effects of injection are also compsred when PV is variable;
again good agreement is found except for the high injection rates.
(See fig. 5.)

..

.
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With this justification of the assumptions that have been made, the
method is now extended to tske account of the additional effects which
result from the injection of a foreign gas (that is, gas having prop-
erties different from those of air).

I@ection of Foreign Gas

The mechanismby which air diffuses through the boundary layer in
a binary mixture due to the concentration gradient is exactly analogous
to that by which heat diffuses in the absence of viscous dissipation
for air-to-air injection. In this analogy the coefficient of binsry

diffusivity D~ corresponds to the thermal diffusivity ~ and
5,2

the Sclmidt number Nsc = ~ corresponds to the Prandtl number
PDE

Uu c1
“ P)=

‘Pr ‘~-

The analo~ is easily seen when the
rewritten as

and compared with the heat-transfer

J
ZTe-T

C!pw
OTe-Tw

gas-transfer equation (11) is

fi=—
Ww

(31)

equation for air-to-air inJection,

Iil
:dz=—
u

(32)
Te-~

Te - Tc

The boundary condition at the wall is

-p= *]W =(1 -Ww)i (33)

which is compared with

Fe51:(Tw-Tc)’

(34)
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The analogous quantities are presented in the following table:

Binary
diffusion

Thermal
diffusion

T. -T

T - Tc

Te - Tc

Te - Tw

Te - Tc

k

P53,2

‘Pr

It may be verified that all the boundsry conditions at the wall, in the
exte~al flow, and at large distances into the interior of the wall
agree with the foregoing analogy. .

Because of the foregoing comparison the following results may be
written immediately: from equation (25),

%
— = Nsc,w-0.3
Eu (35)

where ~ is the thickness of the concentration boundary layer, and

from equation (30)

0.6 Ii
‘Sc ,W

( p##) 1/2
Ww=

N~u,w(l)+~ A

()
p

o
~ (WC)V2

(36)
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The value of
NNU ~ (1)

( ‘)

to be used in equation (36) is necessarily

. #2 ~

that given by equation (18) or equation (19) since p~ is now a vsri-
able quantity and depends on the concentration of foreign gas in the
boundsry layer.

When the gas injected is different from air, the amount of shielding
by convection in the boundsry layer depends critically upon the specific
heat of the gas Cp,l”

The heat-transfer equation (13) is rewritten, by use of equations (4)
and (6), as

and the linear profile

“

w
—=
Ww 1-: (38)

is assumed.
.

Substitution of equations (21), equation (38), and the definition
of NNU into equation (37) gives results similar in form to those for

air-to-air in~ection (eq. (27)):

( )(Cp,l )
.

-11
cp,2 - ‘s’~w0”6 *

(39)
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where

J
z

K=6$ yTe-T tzdz
u OwwTe-~~

NACA TN 4391

(40)

and is a function of NPr,w ~d Nsc,v.

Equation (39) maybe expressed in the alternative form

[

0.6 %c,w --”1
0.6-$ Nti-o.6

1 -%c,w
(
-~H~=~- ~,1 + %,2 1

)
“0”6 (Te - Tw)iI (41)

1 J%,W-O.G -0.6
3 Pr,w

1 -* %,W

The second term on the right-hand side of equation (41) has the form

[
Cp,ly+ CP,2(1

where F, the mean concentration of
layer, is

. ..

-1R) (~- Tw)fi

the foreign ga8

1 - %c,w
0.6

ii=
1 -AN -0.6

3 Pr,w

in the boundary

and where ~, the mean temperature in the boundery layer, is

T (=Tw+ 1-~11 )‘0”6 (Te - Tw)3 Pr,w

In terms of these mean values equation (11) becomes

[
~,lii + CP,2(I - fi)] (y - Tw)iI

.

.

(43)

—

.

(42)” “

(41+)
Heat Heat transfer Boundary-layer shielding
transfer for no

injection .

.
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. Thus, in order to achieve the maximum smount of shielding for given
temperature conditions and mass inJection, Cnal should be made as

. large as
ble; if

then fi

T - TV

.

.

Te - TV

that F

19

possible and, in ad~tion, ~ shoul~’be made as large as possi-

Cp,l’ cp,2 then W shouldbe large, and if Cp,l < cp,2
should be small. The variations with Npr,w and NSC,W of

and ~ are s&wn in figures 7 and 8, respectively. It is seen

increases as %c ,W decreases and that ~-%
Te - Tw

%r,w increases.

Maximum shielding in the boundsry layer is therefore

increases as

achieved when,—
for cp,l> cp,2~ ‘Pr,w is large and NSC,W is small and, for

Cp,l < Cp,z> Nm,w IS lsrge and NW,W is large.

These diffusive effects on the shielding sre explained qualitatively
in the following way (fig. 9): the convective shielding is most effi-
cient when the gas of higher specific heat is transported in the regions
of highest temperature and velocity, that is, in the part of the boundary
layer farthest from the wall.

Equation (27) shows that when Nm,w iS Wge the ve~ocitY boun~

layer is thicker than the thermal boundary layer and thus more of the
hot gas mixture is convected. When %,1 > %,2 ‘d NSC,W is smau,
equation (35) shows that the concentration-boundary-layerthickness is
greater than the velocity-boundary-layer thickness - that is, the foreign
gas of higher specific heat diffuses qtickly through the boundeq l~er
before being convected. On the other hand, when ~,1< %,2 and NSC,W

is large, the foreign gas remains near the wall and displaces the air of
higher specific heat into the hot fast region where it is convected.

An important consideration in any cooling system is the weight
penalty which is incurred in order to maintain the wall at a desirable
temperature. The relation between the rate of mass flow fi and the
temperatures Te, Tw, and Tc is obtained by substitution of the

expressions
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and
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.

H~=cp,2(Te -Tw)(~C)l/2~NNu’w

‘-N #/2 o

(from eqs. (6) and (13), respectively) into

tution results in the following expressions

( ))

%u,w :or equation (19) is used for
~wl/2 o

For axisymmetric flow,

equation (41). This substi-

(
when either equation (18)

P#e 0“4

,,()

0.765 — ‘Pr ,W
-0.6

%#w
(~~wc)l/2cp,2(Te -Tw)

G= (45)
cp,lOw - Tc) + ~(~ - Tw)

and for two-dimensional flow,
.

PeVe 0“4

(QJ

0.570— ‘Pr,W‘0”6(~C)1’2cp,2(Te -Tw)

Iii= (46) -
cp,~(Tw - Tc) + ~(~ - Tw)

—

where

(47)~p =cp,l~+ cp,2(l -w

Probably the most important parameter is the total effective heat
capacity Heff of the coolant; this parameter is a measure of the total

heat absorbed when tiit mass of the coolant is used and is defined as

H % CP,l(TW - Tc) + ~m -Tv)eff=~= (48)
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METHODOF U!JXUUITIONOF RATEOF MASSINJECTICN

21

The problem of most interest from practical considerations is that
of determining the rate of mass injection fi necessary to achieve a
desired wall temperature Tw when the stagnation temperature Te and

the coolant temperature Tc are given. This calculation is made com-

plicated by the dependence of the mean specific heat ED (required for

eq. (45) or eq. (46)) on the rate ~;easssin ection; bo~h these quantities
depend on the concentration Ww. . t47), (42), ~d (35). )

The following method, however, gives results with relatively little
computation:

(1) The parameters Nm,w and NSC,w are found in terms of Ww

for the particular binary mtxture under consideration. (Simple empirical
methods are given in ref. 6.)

(2) Equation (43)

‘-% ~ IN -0.6
Te-Tw= - ~ Pr,w

is usedto give ~ (fig. 7).
.

(3) Eqwtion (42)

1 0.6
- %c,w

R=

1 - + ‘Pr,w
-0.6

is used to give ~ (fig. 8).

(4)Equation (47)

then gives ‘P (fig. 10).
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()
0.4

(5) A plot of ~ ~ against WV can now be made
(%%C)l/2 pe~e

from the results of the substitution of equations (43), (42), and (47)
into either equation (45) or eq~tion (46)*

(6) A second plot of “
%% 0“4

()
against WV canbe‘*=

obtained aE a result of converting equation (36) into the following form
for the axisymmetric case:

Ii %%? 0“4()
o. 765ww

1/2 PeVe(Plfwc) —

or into the following form for the

=
0.6

%c ,W
lV

-Tw

two-dimensional case:

.4
Ii ()pw%r”’.

(P##)
1/2 ‘eve

o. 570w~

0.6
%c,w

Jww
3

(49)

.

.

(5”)
.

The intersection of the curves found in steps (5) and (6) gives WV and
.

(w)
0.4

Ill .
1/2PelJe

(*C)

(7) ~owj P@+ can be fo~d frcsn Ww and Twjand PeVe from
external conditions; thus, fi canbe calculated.

Step (7) may be omitted if the approximation

is made, in which case
h

is given directlyby steps (5)
( p*c)l/2

.

.
and (6) .
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.

In order to see the main effect of CP,l on the mass-flow require-
cp,2

Tw - Tc
ments for given temperature psrameter values of the Wandtl

Te - Tw’

number and Schnidt number equal to unity are taken.

Thus, frmn equation (43)

from equation (40) K =$ and from equa.tion (42) F =2. Using this
4

value for ~ in equation (47’)gives

Then, equation (45) for axisymnetric flaw becomes

i Ii ()
*C 0“4=

(p&ec)l’2(p+#)l/2‘ewe ‘

and equation (46) for two-dimensional flow

0.765

i 0.570%

The results are shown in figure Il. It is seen that the required

mass flow is reduced by a large factor for the higher values of Cp,l.

cp,2.

(This is especially true for the higher heating rates as

)

%-TC+O

Te-~

inasmuch as the shielding by heat convection in the boundsry layer is
large.

.
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CONCLUDING REMARKS

.
An approximate analysis has been presented whereby the reduction

in heat transfer near the stagnation point ~y be calculated with little
difficulty when the coolant properties are known. The agreement with
available exact solutions for air-to-air injection is extremely good

,,

in view of the simple approach employed, and the qualitative trends of
the results for foreign-gas injection in e@~aining the shielding mecha-
nism suggest that-the approximate analysis will generally give reliable
results. It is expected that the simplifie~”calculation which shows
the dependence of the coolant mass requirement on wall temperature and
coolant specific heat will provide a good estimate for engineering
purposes. —.

.

The conclusions of the analysis are summarized briefly as follows:

Maximum boundsry-layer shielding is achieved when the gas of higher
specific heat is convected in the hot fast-moving part of the boundary
layer farthest from the wall; this requires that the coolant gas intro-
duced have

(a) High specific heat compared with that of air

(b) High binary diffusivity (that is, small Schmidt number)

(c) Lerge Prandtl number.
.

Of these three properties the first is the most important, whereas
the diffusive effects are of secondary importance.

.

—

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., July 3, 1958.

.
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APPENDIX

FLOWWITHINTBEPOROUS

For the purpose of the present analysis

25

WALL

it is assumed that the wall
is uniformly por&s and presents, to the-stream, an sxea A of solid
material and an area B across which coolant gas is transported.

The manner in which gas is transported through the porous material
is given by

~B
-PDM dy + pvwB = ti(A+ B)

Diffusion Convection Total gas
toward surface toward transported

mrface

(Al)

since fi is the rate of mass “introducedper unit area of body surface.

The air contained in the mixture is transported according to the
following equation:

-PDW $$B =

Diffusion of air
from surface

since there is no net transport of air
state. From equations (Al) and (A2),

PV(l -W)B

Convection
toward surface

into the body in the steady

pvB = k(A + B)

The eq~tion for transfer of heat within the porous wall is

(M)

(A3)

(A4)

Conduction into Rate heat absorbed
solid and coolant by coolant

.
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Equation (A4) may be written

(A5)

—
&

where ~ is a mean value of the effective thermal conductivity

‘b! + ~. Similarly, equation (A2) may be written (by using eq. (A3))
—

A+i5

as

where mu is a mean value

Equations (A5) and (A6)
form

(A6)

have solutions (similar in nature) of the

fi~,lY

T=
ii

Tc + (Tw - Tc)e

which satisfies the condition T +Tc as y +-m, and

A characteristic

in which the

its valueat

thickness Qm may be defined as

J
-CQ

.gT=
T-Tc

dy
E=-

0 ‘w-Tc m~,l

(A7) .

(A8)

(A9)

temperature changes from its value at the surface TV to

the far interior T=.

Similarly, the concentration W changes from

to the value 1 in a layer of thickness QW (within

where

—.

.

.-

Ww at the surface

the porous wall)
.
.

.
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.

&

.

.

J-l-w PDW
8W = dy=—

0 l-WW &
(Ale)

B
It is seen that both thicknesses depend on the ratio –. It is desirable

A
to limit the relatively high te,~rature region within the wall to a
narrow region nesr the surface; the specific heat ~ must be lsrge.
and ~ must be small, that is, both kb and k should be small. Con-

siderations of the bounda&y-layer flow outside the wall also lead to the
conclusion that the specific heat %,1 should be Mge ~d k shofid

be small (so that the Prandtl number-&ybe as large as possible).
these requirements result in two desirable features:

(a) Confinement of the high temperatures within the body to a
narrow region near the surface and

(b) Maxhum convection of heat away from the stagnation point
shown in the body of the report)

The conditions at the surface as it is approached frcm within
wall are given as follows:

From equations (A2) and (A3)

-(PDJ-23.:= (1 - Ww.)&(A + B)

and from equation (A4)

()(k#+ld3) ~
w w-

= %,l(TW - Tc)~(A + B)

Thus,

(as

the

(ml)

(Au?)

where the subscript w- denotes that the surface is approached through
negative values of y. The rate of heat transfer from the stream

boundary layer is
()
kg (A+

@w

(eq. (A12)) becomes

.

Thus, there is a discontinuity

B) so that the boundsry condition

= ~,dTw - Tc)fi (~3)

in ~ at the surface when ~ ~ kb.
.
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Similmly, the condition of no net transfer of air to the body is .

given by

+% :):A
obtained when the surface is
Since

●

+ B) = (1 - Ww)~Vw(A + B) (A14)

approached through positive values of y.

.

~-vw- = il= ~v~

equation (A14) may be written as

-P2$i)w
= (1 - Ww)il

It is noted that v is discontinuous since there is a disc~tinuity

in the srea available for convection given by the ratio The
=“

concentration gradient dW~ is also discontinuous for the same reason;

this is expectedly anal&y with the temperature gradient ~. Equa-—

tions (A13) and (A15) are seen to be identical with equations (3) and
(2) when evaluated at the wall.

.

.
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Figure l.- Flow configuration.
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Figure 2.- Boundary-layer mass balance.
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Figure 4.- Effect of air-to-air injection on heat-tramsfer parameter.
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Figure 5.- Effect of

1.0
} . .
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ii
Rate-of-injection par-ter, _

(*) U2

air-to-air injection
for two-dimensional

on heat-transfer parameter
case.
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Figure 7.- Variation of
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